MODULE
Sistemi di Numerazione Antichi

Nell'antica Roma si adoperava un sistema basato essenzialmente sul numero cinque (vedi numeri romani), additivo e non posizionale: il simbolo X rappresenta sempre il numero dieci, V il numero cinque, e così via; invece, il comune sistema decimale è di tipo posizionale: ogni cifra assume un significato diverso a seconda della posizione in cui si trova (unità, decine, centinaia, ecc.); i sistemi di tipo posizionale sono stati tramandati dagli Arabi. 

Le ragioni della superiorità del sistema numerico decimale-posizionale, che si è diffuso dall'India, sono il principio posizionale (che di per sé denota i diversi ordini numerici) e l'uso di dieci simboli, comprensivi dello zero (che colmava i vuoti in un sistema posizionale). Un sistema posizionale è un naturale e sistematico sviluppo del sistema moltiplicativo in cui viene usata una base fissa, spariscono come superflui determinativi e moltiplicatori e dove il coefficiente è rappresentato dalla posizione della cifra nell'intera rappresentazione numerica. Le altre notazioni dovevano dare a ogni cifra un valore fisso a prescindere dalle posizioni. Nella numerazione cinese i segni per 7829 sono 7 mentre col sistema da noi utilizzato sono 4. Nel nostro sistema sono soppressi gli indicatori delle potenze di 10 e le cifre delle unità prendono diverso valore a seconda delle posizioni (misto ideale tra il numero di cifre e la necessità di iterazione delle stesse). In questo modo il linguaggio scritto comunica una rete di concetti mediante semplice permutazione di pochi simboli.

Il sistema decimale-posizionale consente anche una comoda esecuzione di operazioni aritmetiche: si mettono i numeri da sommare uno sotto l'altro e li si può addizionare colonna per colonna, riportando i totali eccedenti il 10 nella colonna a fianco (ordine superiore). Se si usano invece i numeri romani non c'è una notazione che abbia efficacia algoritmica (non è possibile cioè fare operazioni se non ricorrendo a un supporto esterno, tipo l'abaco).

BabilonesiCinesi e Maya con il principio di posizione già furono capaci di rappresentare qualsiasi numero con una quantità ridotta di cifre di base, ma ebbero dei limiti:

  • I Babilonesi non associarono cifre diverse alle 59 unità significative del primo ordine, ma iteravano i due simboli disponibili. Essi non concepirono lo zero né come numero (quantità nulla) né come operatore aritmetico.
  • I Cinesi mantennero la notazione ideografica e reintrodussero elementi di notazione moltiplicativa. Inoltre il loro uso dello zero fu sporadico e poco significativo.
  • I Maya, con l'anomalia del moltiplicatore del terzo ordine numerico, persero la possibilità di utilizzare lo zero come operatore.

Anche gli scribi israelitici e i matematici greci si dotarono di notazioni numeriche equivalenti allo ieraticoegizio, ma utilizzarono le lettere (in ordine consecutivo) dei rispettivi alfabeti.

L'alfabeto fu il primo perfezionamento della scrittura adattabile a ogni inflessione di ogni lingua articolata e dava la possibilità di scrivere tutte le parole con un piccolo numero di segni fonetici (lettere). Esso fu opera dei Fenici, commercianti spinti da un bisogno comprensibile di concisione. Il commercio diede diffusione al loro sistema:

Ci fu dunque un tentativo di sovrapporre ordine alfabetico e ordine numerico. Gli Ebrei usarono la numerazione alfabetica:

Nell'antica Roma si adoperava un sistema basato essenzialmente sul numero cinque (vedi numeri romani), additivo e...